
2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 1 / 12 -

ForCy

The Embedded Language Processor

1. Introduction
In the development of embedded systems, there is a need to understand multiple CPU
architectures and to be able to use dedicated development environments. This situation
gives rise to concerns that long term maintenance, including maintenance of the
development environment itself, could become very difficult as the environment evolves
over time. In fact, such maintenance problems have already been observed. For example,
finding compatible CPU’s for ten year old FA systems is very difficult. Reconstruction of
the environment to generate the same object code has become almost impossible. In
cross development, it is foreseen that reconstruction of older development environments
will become increasingly more difficult because manufacturers continually update
integrated environments and operating systems as improvements are made in them. In
addressing these concerns, I have developed a technique to embed compilers into
systems equipped with microprocessors. This will provide for minimum maintenance in
the long term when effecting repairs or functional enhancements.

Photo 1: Example Implementation of the ForCy

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 2 / 12 -

2. Virtualization of CPU Architectures
CPU’s implemented with intermediate code interpreters can be operated as virtual
stack machines. One CPU can easily be replaced by another CPU equipped with the
same interpreter. With the increased processing power of recent low-end
microcontrollers, some decrease in processing efficiency may be acceptable for many
applications.

Figure 1: Built-in Compiler and Virtual Stack Machine

The architecture of virtual stack machine is much simpler than JAVA VSM. Like
FORTH, it has two stacks. User program can not access the return stack directly.

Figure 2: ForCy Stack Machine Architecture

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 3 / 12 -

3. Embedded Language Processors
Microcomputers embedded with source programs and language processors require only
text editors and a user interface in order to repair or replace code. Source code is
internally encoded into intermediate code during the transfer from the host PC.
Alternately, the source code can be embedded into the compiling device before
compilation. The intermediate code is stored in programmable flash memory or
EEPROM’s.

Figure 4: Memory usage of ATmega88

4. Reducing the Overall Bulk of Compilers
The language specification has been written to reduce the code bulk of the compiler. It is
reduced to be compatible with the limited amount of memory (in the range of several
kilobytes) available to low-end microcomputers. In addition, the language offers low
implementation cost and high scalability through modifications and simplification
allowing improved program flow. ForCy is a programming language in a postfix
notation similar to the C language with PostScript syntax. It generates intermediate
code for virtual stack machines. This compiler can handle three data types, such as
16-bit unsigned integers, arrays and strings. Pointer operations are prohibited, and tail
callings are optimized to reduce stack consumption. The main process of code
generation is identification of words and assignment of byte codes in virtually
one-to-one correspondence. A parser counts the length of { } blocks and generates code to
be disregarded. Due to the small RAM capacity, the one-pass processing is designed to
compile into self-programmable flash memory while receiving source text through a
serial communications interface.

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 4 / 12 -

Figure 3: Internal Structure of the ForCy Compiler

The interpreter sequentially calls processes depending on intermediate codes to operate
the data stack and the return stack. The compiler itself is also encoded into
intermediate codes and operates on the interpreter. The entire language processors
including compilers and interpreters can be implemented in 4 to 6 kilobytes of code.
Although ForCy began from FORTH, it has the control syntax easy to get used to C
programmer.

 @s { } do for break while continue i f ifelse case switch of self

 . . . nip swap dup over @ =

 == != < > <= >= ++ -- + - * / % div << >> & | ^ ~ && || ! min max rand

 sfr =sfr interrupt clk sec

 @c? @c %c %s %d %x

List 1: ForCy System Defined Words

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 5 / 12 -

 "¥n¥tHello, World.¥n" %s // show string
 :hello

 10 0 // repeat 10 times
 {
 hello
 ++
 } for ..
 :hello_10

 ;i [10]a [10]b [10]c // array

 10 0
 {
 dup =i
 i a i b * i =c // c[i] = a[i] * b[i];
 ++
 } for ..
 :c=ab

 100 < {
 10 < {
 ' ' %c
 } if
 ' ' %c
 } if
 %d
 :%3d // show 3 digits

 ;x ;y // multiply table

 1 =y
 {
 y 9 <= while // repeat from 1 to 9
 1 =x
 {
 x 9 <= while // repeat from 1 to 9
 x y * %3d // show x * y
 ++ =x
 } do .
 ‘¥r’ %c ‘¥n’ %c // CR-LF
 ++ =y
 } do .
 :multiply

 1 > { dup -- self * } if
 :factorial

List 2: Example of ForCy Program Code

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 6 / 12 -

5. Implementation
This simplified language was implemented using an Atmel ATmega88 (8K words ROM
and 1024 bytes RAM). It sequentially compiles program text transmitted through a
RS-232C interface. It then writes the results into a flash memory area and interprets it.
It can calculate the first 100 digits of the value of PI in 3 seconds using an internal 8
MHz clock. This language is also implemented with a PIC12F683 (interpreter only),
PIC16F88, R8C/Tiny and M32R. An interrupt mechanism is available in ATmega88,
R8C/Tiny and M32R. Thus it can easily activate tasks at regular intervals and process
multiple tasks in quasi-parallel fashion.
USB interface, matrix LED, buttons and piezo-electric buzzer are added on board to
evaluate this embedded language processor.

Figure 5: ForCy Evaluation System Hardware Block Diagram

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 7 / 12 -

Building ForCy executable on MCU is a little complicated. To reduce the total code size
and to enhance the portability, compiler is programmed by ForCy itself.

 step 1. Make compiler and interpreter in C.

 step 2. Generate ForCy executable on PC using some compiler (e.g. Visual C++).

 step 3. Make compiler described by ForCy.

 step 4. Generate ForCy compiler intermediate code.

 step 5. Make interpreter by the assembler depending on MCU.

 step 6. Assemble and Link with ForCy intermediate code.

Figure 6: Build Process of the ForCy Executable

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 8 / 12 -

 // compile
 0xff =err
 0 =iptr
 {
 lex =len // lexical analyzer
 len while

 // parse
 0 token
 {
 ':' { // register word
 ' ' %c puts

 0 code_out // iRET
 cstart 0 1 dic_add =err // iWRD
 cptr ++ =cstart // keep next entry
 } case

 '¥'' { // constant
 1 token number_out
 } case

 ';' { // register variable
 vptr 4 1 dic_add =err // iVAR
 vptr ++ =vptr
 } case

 '[' { // register array
 vptr 6 // iARY
 1
 {
 dup token ']' == nip break
 ++
 } do
 ++
 dic_add =err
 1 atoi vptr + =vptr

 } case

 // default
 0
 0 token '=' == nip {
 ++
 } if =eq

 0 dic_find
 0xff ==
 0 token isdigit nip && {
 .. 0 atoi 2
 } if

 0xff != {
 1 >> {
 word_out
 number_out
 variable_out
 array_out
 } of
 }
 {
 .. 0xfe =err // err: undefined word
 } ifelse

 } switch .

 err 0xff != nip break
 } do

List 3: Self-Programmed ForCy Compiler (portion)

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 9 / 12 -

SysLP:
 movw zL, cpL
 clr tH
 lpm tL, z+ ; get {} block length
 st -y, zH ; push {} entry to RS
 st -y, zL
 add zL, tL ; add length to PC
 adc zH, tH
 movw cpL, zL ; skip {} block
 rjmp CodeNext

SysFor:
 ld tH, -x
 ld tL, -x
 adiw xL, 2
 cp tL, dtL
 cpc tH, dtH ; index==limit?
 brne SysDo
 adiw yL, 2 ; exit
 rjmp CodeNext
SysDo:
 cpi cpL, 0
 brne do_nc
 dec cpH
do_nc:
 dec cpL ; PC--
 ld tL, y
 ldd tH, y+1 ; copy {} entry
 st -y, cpH ; push PC to RS
 st -y, cpL
 movw cpL, tL ; set {} entry to PC
 rjmp CodeNext
SysDo_:
 ldd cpL, y+2 ; copy {} entry to PC
 ldd cpH, y+3
 rjmp CodeNext

SysBreak:
 movw tL, dtL
 ld dtH, -x
 ld dtL, -x
 or tL, tH
 breq brk_end ; TOS != 0?
 ld cpL, y+
 ld cpH, y+ ; pop PC from RS
 adiw yL, 2
 inc cpL ; PC++
 brne brk_end
 inc cpH
brk_end:
 rjmp CodeNext

List 4: ForCy Interpreter for ATmega88 (portion)

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 10 / 12 -

6. Communication
To add USB interface to the ForCy evaluation system, CDC protocol is implemented into
ATtiny45. AVR-CDC is a USB-RS232C interface using CDC (Communication Device
Class) protocol on USB 1.1. Although CDC is a part of USB 2.0 standard, it works on
low speed USB. ATtiny45 can handle the 4800bps 8N1 well enough.

1. No dedicated driver necessary. CDC loads Windows built-in usbser.sys.

2. Very low cost. With ATtiny45, this is the cheapest solution for the USB-RS232C interface.

An information file (avrcdc.inf) is needed when connecting it to Windows PC first. The
Virtual COM Port appears after the connection established. No procedure is necessary
for the CDC connection on Macintosh OS X.
The AVR-CDC portion of a circuit is simple. Vcc should be less than 3.6V to suit USB
specification. Quartz crystal is recommended instead of ceramic resonator to avoid
SYNC errors. Program size is 2.8KB. Since ATtiny45 has no USART, RS-232C timing
(4800bps) is made by 8bit timers and the data is transmitted by USI.

The AVR-CDC is based on Object Development's AVR-USB. I released the added portion
as free software (GPL2).

Figure 7: USB-RS232C Interface on Low Speed CDC

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 11 / 12 -

7. Usage
Build the circuit and write firmware (forcyavr.hex and cdctiny.hex) into ATmega88 and
ATtiny45. High Voltage Serial Programming is necessary for ATtiny45.

When connecting with a USB port of Windows XP/2000 first, a Driver Setup Dialog
appears. Specify the folder in which "avrcdc.inf" exists, without searching automatically.
Although it is warned that the driver is not certified, confirm it. It only loads Windows'
built-in usbser.sys. Then, the Virtual COM port appears.

Set up ‘Hyperterminal’ with the virtual COM port at 4800bps, 8 data bits, Non-parity, 1
stop bit, No flow control. Choose control keys act as ‘Windows keys’ if you prefer Ctrl-V
to paste.
Establish the connection after attaching the system to a USB port. Close the connection
before detaching it from a USB port.

 ForCy monitor commands

 # enter compile mode
 Esc or ¥ return to command mode
 g execute
 d dump intermediate code
 $ set auto start

Hit ‘#’ key and ‘>’ prompt appears. Transfer/paste ForCy program text. While
transferring and compiling the program, registered words are displayed. After the last
word was registered, hit Esc key. Then hit ‘g’ to execute. These keys can be included to
source code for quick operation.
‘Auto Start’ automatically start program after reset. Resetting with pressing SW2
button cancels it.
Boot loader is available for updating firmware. After resetting with pressing both SW1
and SW2, transfer HEX file to rewrite the top 7KB of the flash memory. With the boot
loader, you can enjoy C/Assembler programming after getting tired of ForCy.

2006-08-16
Recursion Co., Ltd.

Osamu Tamura

- 12 / 12 -

8. Summary
This method was invented and is being developed mainly to reduce development loads
of embedded systems and to ensure ease of long-term system maintenance. The
following applications are expected to be available:

(1) Control of microcomputers in FA systems for a long-term maintenance.

(2) Customization of behavior for experimental equipment and sequencers.

(3) Integrated management of multiple processors in standalone systems (e.g. robots).

(4) Educational material for microcomputer applications (programmable with only text
editors and user interface software).

The ForCy evaluation system has been introduced as an educational material at a
vocational school.

